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Abstract

Pattern scaling constructs future climate change scenarios using the normalized
change patterns of GCMs, offers the possibility of representing the whole range of
uncertainties involved in future climate change projection. This paper investigates the
applicability and uncertainty associated with the pattern scaling method in constructing5

the changes of future precipitation intensity indices at regional scale, using a two-step
ensemble approach. In the first step, the linearity accuracy and GCM internal variabil-
ity were examined explicitly. The inter-model variability of the GCMs and associated
confidence intervals were produced in the second step ensemble. Australia and its 7
administrative regions was selected as the study area and three precipitation intensity10

indices, including two precipitation extreme indices, were used for the examination: i.e.,
the 99th percentile daily precipitation intensity (P99), the 20-yr-return extreme precipi-
tation intensity (RP20), and the mean precipitation intensity (precipitation amount per
wet day) (RPD). A total of 12 IPCC AR4 GCMs with 6 simulation samples were used
for the ensemble. For the 3 precipitation intensity indices, good linear relationships15

between precipitation intensity indices change and global mean temperature change
at the national level were found for most GCMs, however, the linear relationship weak-
ened when the analysis was applied to the administrative regions. In addition, the
GCM internal signal-to-noise ratios for each GCM tended to decrease at the regional
and grid cell levels, along with the reduction in spatial scale. Both GCM-internal and20

inter-model variability was significant, and the inter-model variability was larger than
GCM-internal variability. The final result of the inter-model ensemble median results
show that for Australia, in general, all three indices will increase under global warm-
ing, with the change rates being 3.56, 7.62 and 2.26 % K−1 for P99, RP20 and RPD
respectively at the national level.25
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1 Introduction

While it is generally agreed that General Circulation Models (GCMs) are still the best
tools in constructing future climate change scenarios, the large variation of simulation
result from different GCM runs, or even from the same GCM but with different radiative
forcing, has caused great difficulty in applying the GCM result directly in climate impact5

analysis when the range of uncertainties become an important factor in adaptation
planning consideration. Since early 1990s, an alternative method has been devel-
oped in constructing future climate change scenarios instead of using GCM outputs
directly (Santer et al., 1990). Such a method, known as pattern scaling, was originally
envisaged as a temporary compromise to add a time component to an equilibrium ex-10

periment with a GCM, pending the availability of transient experiments, and also to
permit the comparison of standardised spatial patterns from different GCMs (Santer et
al., 1990). However, this technique has been proved to be very useful for a compre-
hensive risk assessment of climate change when more and more GCM outputs have
become publicly available (Mitchell, 2003; Li et al., 2009). Pattern scaling offers the15

possibility of representing the whole range of uncertainties involved in future climate
change projections based on various combinations of emission scenarios and GCM
outputs, which allows cross model sensitivity analyses and uncertainty examinations
to be conducted easily (TGICA, 2007). It has been widely used in mean temperature
and precipitation change studies (Mitchell, 2003; Ruosteenoja et al., 2007).20

Pattern scaling is based on the theory that, firstly, a simple climate model can accu-
rately represent the global responses of a GCM, even when the response is non-linear
(Raper et al., 2001), and secondly, a wide range of climatic variables represented by
a GCM are a linear function of the global annual mean temperature change repre-
sented by the same GCM at different spatial and/or temporal scales (Mitchell, 2003).25

Pattern-scaling does not seem to be a very large source of error in constructing re-
gional climate projections for extreme scenarios (Ruosteenoja et al., 2007), however,
in applying pattern-scaling, two fundamental sources of error related to its underlying
theory need to be addressed: (1) Nonlinearity error: the local responses of climate
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variables, precipitation in particular, may not be inherently linear functions of the global
mean temperature change; and (2) Noise due to the internal variability of the GCM.

Among the wide range of climate variables, precipitation extremes have attracted
much research attention because of the potential disasters these may cause to human
society and natural systems. Extreme precipitation events are projected to increase5

with climate change, even in areas where the total precipitation is projected to de-
crease (Meehl et al., 2007), since global warming will noticeably enhance the hydro-
logical cycle at both global and local scales. In order to adequately assess the climate
change impact on extreme precipitation events, the characteristics of GCM-simulated
precipitation and its relationship with global warming need to be evaluated (Perkins et10

al., 2007; Alexandra and Arblaster, 2008). The evaluation of observed and modeled
trends has shown that the confidence in GCM projected extremes of precipitation is
much less than that of temperature (e.g. Kharin et al., 2007; Kiktev et al., 2007). In
general, the magnitude of changes in precipitation extremes simulated by GCMs was
found to have a linear relationship with the strength of GHG emissions or in proportion15

with the global warming trend (Alexander and Arblaster, 2009; Tebaldi et al., 2006),
which is inline with the linear response theory of pattern scaling.

On the other hand, given the current state of scientific understanding and the limi-
tations of GCMs in simulating the complex climate system, a large ensemble of GCM
simulations is more appropriate in climate change projections than using individual20

GCM simulation outputs, particularly if such projections will be used for impact assess-
ments, because only large ensemble of GCM simulations sampling the widest possible
range of modelling uncertainties can provide a reliable specification of the spread of
possible regional changes (Murphy et al., 2004, 2007; Sorteberg and Kvamsto, 2006;
Räisänen, 2007). With respect to using the ensemble approach for inter-model uncer-25

tainty analysis, several methods have been introduced from past studies. The Reliabil-
ity Ensemble Average (REA) method (Giorgi and Mearns, 2002) quantifies two criteria,
bias and convergence, for multi-model evaluation, and produces estimates of regional
climate change, the associated uncertainty bounds and model reliabilities through a
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weighted average of the individual GCM results. The REA weights contain a measure
of model bias with respect to current climate and a measure of model convergence
(applied to the models’ projected change), defined as the deviation of the individual
projection with respect to the central tendency of the ensemble (i.e., the final weighted
average). Another method of multi-model ensemble in probabilistic climate projections5

is the Bayesian approach (Tebaldi et al., 2005; Ferrer et al., 2007). The premise of this
method is that outliers are likely to be less credible and would lead to over-dispersive
uncertainty estimates if included. This issue is inevitably open to debate, but it is
clear that probabilistic estimates derived from multi-model ensembles are significantly
dependent on methodological choices necessitated by the nature of the ensembles10

(Lopez et al., 2006).
Simulations of extreme precipitation in GCMs cannot be expected to accurately re-

produce observed absolute quantities or rates of change. The relatively coarse resolu-
tion of GCMs prevents the simulation of phenomena that manifest their intensity mainly
at synoptic scales (Dai, 2006; Tebaldi et al., 2006). GCM simulated extreme pre-15

cipitation intensities are systemically much lower than the observed data (Dai, 2006;
Kharin et al., 2007), therefore, skill based weighting ensemble method, such as REA or
Bayesian model averaging (Min et al., 2007) are not applicable for precipitation intensity
change predictions for this research.

In this paper we present a two-step ensemble method to test the applicability of pat-20

tern scaling in constructing the future change of precipitation intensity indices and the
associated uncertainties. In the first step ensemble, the linearity accuracy and GCM
internal variability were examined. The GCMs inter-model variability with confidence
intervals was produced in the second step ensemble. Australia and its 7 administrative
regions were selected as the study area and three precipitation intensity indices, in-25

cluding two precipitation extreme indices, were used for the examination, i.e.: the 99th
percentile daily precipitation intensity (P99), the 20-yr-return extreme precipitation in-
tensity (RP20), and the mean precipitation intensity (precipitation amount per wet day)
(RPD).
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Based on the data availability, a total of 12 IPCC AR4 GCMs were selected for this
study. They are labeled as GCM 1 to 12 in this paper, following the sequence of: 1
– BCCR BCM20; 2 – CCCMA CGM3(T47); 3 – CNRM CM3; 4 – CSIRO MK35; 5 –
ECHAM MPI; 6 – ECHO G; 7 – GFDL CM20; 8 – GFDL CM21; 9 – IPSL CM40; 10
– MIROC MEDRES; 11 – MRI CGCM2; 12 – NCAR CCSM3. All GCM daily precip-5

itation and monthly mean temperature data were obtained from the WCRP CMIP3
multi-model dataset (https://esg.llnl.gov:8443/).

2 Methodology and data

The two step ensemble method included a GCM-internal ensemble and an inter-model
ensemble. A linear least square regression line fitting method described by Mitchell et10

al. (2003) and Ruosteenoja et al. (2007) was employed for the GCM-internal ensem-
ble in this research. Based on the pattern scaling theory, for a given GCM, the linear
response change pattern of a climate variable to global mean temperature change rep-
resented by the GCM, should be obtained from any one of its GHG emission simulation
outputs. However, such a consistent linear response is rarely found from the outputs of15

a given GCM running under different radiative forcings, or for the same radiative forcing
but different simulation periods. The reason is partly due to our limited understanding
of the climate system, and partly due to the randomness of the climate variation in
the GCM simulations. Hence the objective of the first step ensemble is to reduce the
impact of the GCM internal variability from the sampled emission scenarios and time20

periods.
Pattern scaling may be described as follows: for a given climate variable V , its

anomaly ∆V ∗ for a particular grid cell (i ), month or season (j ) and year or period (y)
under an emission forcing scenario (x):

∆V ∗
xyij =∆Txy ·∆V

′

i j (1)25

∆T being the annual global mean temperature change.
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The ensemble pattern value (∆V
′

i j ) was calculated from the GCM simulation anomaly
(∆Vxyij ) using linear least squares regression, that is, the slope of the fitted linear line.

∆V
′

i j =

m∑
y=1

n∑
x=1

∆Txy ·∆Vxyij

m∑
y=1

n∑
x=1

(∆Txy )2

(2)

where n is the number of emission scenarios and m is the number of future sample
periods used. The size of the GCM-internal ensemble was m×n. In this research, three5

SRES scenarios (A1B, A2, and B1) and 2 sample periods (2046–2065 and 2081–2100)
were used. Therefore, the ensemble size was 6 as there were 6 simulation samples
for each of the 12 GCMs. For a given climate variable, its regional change patterns
of per degree global warming were calculated by applying Eq. (2) for each GCM, and
the GCM-internal standard deviation (SD) was calculated based on its 6 simulation10

samples. A signal-to-noise ratio (SNR) was used to reveal the significance level of a
climate variable to noise that included in simulations:

SNR=
|∆V

′
|

SD(∆V ′)
(3)

In the inter-model ensemble step, the median (50th percentile) value was used in pre-
senting the average ensemble result, which is arguably better than the mean value15

(Kharin et al., 2007), while the 10th and 90th percentiles were used for the confi-
dence intervals analysis, or to demonstrate the range of uncertainties from different
GCM simulations. The confidence intervals were computed with a bootstrapping ap-
proach (Chernick, 1999). We assumed that the change rate generated from GCMs
fitted with a generalized Weibull distribution. The L-moments method (Hosking, 1992)20

was firstly applied in estimating the parameters of the generalized Weibull distribution.
Then the bootstrap mean for a specified confidence interval was generated from 400
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random re-sampling simulations. More detailed descriptions on the application of L-
moment and bootstrapping methods can be found in Kharin et al. (2007) and Tebaldi
et al. (2006). All three precipitation intensity indices were calculated from IPCC AR4
GCM daily precipitation outputs for three SRES scenarios (A1B, A2, and B1) and 2
future periods (2046–2065 and 2081–2100). The period of 1981–2000 was used to5

represent the baseline condition as suggested by IPCC AR4 (IPCC, 2007). The 99th
percentile precipitation intensity (P99) was estimated using the non-parameter Gauss
kernel density method (Parzen, 1962). The 20-yr return daily precipitation intensity
(RP20) was calculated from the General Extreme Value (GEV) distribution using the
L-moments parameter estimation (Hosking, 1992). The mean precipitation intensity10

(RPD) was calculated as the total precipitation amount divided by the number of wet
days (precipitation >1 mm). Once the intensity indices were calculated for each grid
cell, their simulation anomaly were calculated by comparing the difference between
future projections and the baseline, and then the ensemble pattern values were calcu-
lated using Eq. (2).15

3 Results

3.1 The 99th percentile daily precipitation intensity changes

3.1.1 The linearity of the 99th percentile daily precipitation intensity change (∆
P99) in response to global annual mean temperature change (∆T ).

Figure 1 shows the linearity of ∆P99 in response to ∆T of the 12 GCMs at national20

scale. Also shown in the figure is the R2. A value of R2 higher than 0.6577 correla-
tion coefficient, r > 0.811, n−2 = 4 indicates the linear relationship passed the 95 %
significance level. Among the 12 GCMs, 8 GCMs had R2 values that passed the 95 %
significance level, which showed a strong linear response of ∆P99 to ∆T. Three GCMs,
BCCR BCM20, MRI CGCM2 and NCAR CCSM3, have small R2 values, showing that25
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almost no linearity could be detected from these 3 models. CSIRO MK35 demon-
strated reasonable linearity between ∆P99 and ∆T, as indicated by its moderate R2 val-
ues. GFDL CM20 had the most rapid change with increased rates exceeding 10 %K−1

by all its 6 simulations. The lowest change rate was found in NCAR CCSM3, which
had all 6 simulations of less than 1 %K−1. A negative sign in ∆P99 against ∆T was5

found in BCCR BCM20 in its A1B 2046–2065 simulation, while the change rates from
its other 5 simulations were all positive.

Though most of the GCMs demonstrated a high level of linearity of ∆P99 against ∆T
at the national scale, such a good linearity was not found at the regional level. Table 1
lists the R2 of each GCM for the 7 administrative regions. Compared to 8 GCMs at10

national level, there were 3 to 5 GCMs that passed the 95 % significance level for the
linearity test for each administrative region. NSW, TAS, and VIC all had 5 GCMs, while
NT and QLD only had 3 GCMs. For each GCM, normally 2 to 4 regions showed signif-
icant linear correlations, except BCCR BCM20 with no region having significant linear
correlation between ∆P99 and ∆T. For CSIRO MK35 and NCAR CCSM3, their linear15

correlations were not significant at the national scale, but passed the 95 % significance
level in 2 regions.

3.1.2 The comparison of GCM-internal and inter-model variability of the 99th
percentile daily precipitation intensity change

For each GCM, also listed in Table 1 is the ensemble pattern values (∆P’99) and its20

signal-to-noise ratio (SNR) calculated from the 6 samples for Australia and its 7 ad-
ministrative regions. ECHAM MPI, ECHO G and MIROC MEDRES showed moderate
to high increase rates (from 6.91 to 10.86 %K−1for ECHAM MPI, 2.42 to 8.86 %K−1for
ECHO G and 2.06 to 10.12 %K−1 for MIROC MEDRES) and most importantly with
relative strong signals for all regions (SNR from 2.27 to 6.61 for ECHAM MPI, 2.2425

to 6.48 for ECHO G and 1.72–4.27 for MIROC MEDRES). Most regions simulated by
CNRM CM3, CSIRO MK35, GFDL CM20, GFDL CM21 and IPSL CM40 that had high
change rates were also accompanied with relatively strong signals.
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For some models, the ∆P’99 varied significantly from one region to another,
GFDL CM21 in particular with its ∆P’99 range from 0.86 to 15.11 %K−1, which indi-
cated the significant spatial difference of ∆P99 in response to ∆T. Furthermore, ∆P’99
could vary significantly from one GCM to another for the same region. For example, NT
had a ∆P’99 range from −1.17 to 24.72 % K−1. The range was reduced at the national5

level, changing from 0.82 to 13.77 % K−1 but was still significant.
Figure 2 illustrates the GCM internal and inter-model variability in annual ∆P’99 over

Australia. For each GCM, the 6 sample values were distributed randomly, independent
of both the emission scenarios and the time period. BCCR BCM20 and ISPL CM40
showed the largest SD among GCMs (shown in Fig. 1), because of the unusual result10

from one sample of its simulation. GFDL CM21 also showed a larger SD with a large
increase rate of ∆P’99. Both MRI CGCM2 and NCAR CCSM3 had small SDs with
no increase rates, however, the respective R2 values did not pass the 95 % significant
level test. The inter-model SD was 7.23 (shown in Table 5), therefore much larger than
any one of the GCM internal SD, which was also shown in Fig. 2 as the relative short15

bars compared to the wide range of ∆P’99 values from the 12 GCMs.

3.2 The 20-yr return daily precipitation intensity changes

3.2.1 The linearity of the 20-yr return period precipitation intensity change
(∆RP20) in response to global annual mean temperature change (∆T )

Figure 3 shows the linearity of ∆RP20 in response to ∆T and the R2 of the 12 GCMs20

for Australia. Among them, six of the GCMs passed the 95 % linearity significance level
with R2 values larger than 0.6577, showing strong linearity signals were detected by
these models. Almost no linearity signal could be detected from the MIROC MEDRES
and NCAR CCSM3 models. The remaining 4 models, BCCR BCM20, CNRM CM3,
CSIRO MK35 and MRI CGCM2 showed some linearity signals, with their R2 range25

from 0.32 to 0.44.
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Similar to ∆P99, at the regional level, the significance of the linearity between ∆RP20

and ∆T decreased compared to the national scale, as shown by the R2 for each re-
gion in Table 2. For most regions, there were 2 to 5 GCMs that pass 95 % significant
level test, including 5 GCMs for VIC, 2 GCMs for QLD, much less than for the overall
Australian area. Among the GCMs where the correlation coefficients did not pass the5

95 % significant level at the national level, MIROC MEDRES and NCAR CCSM3 had
one region each that did pass the 95 % significant level.

3.2.2 The comparison of GCM internal and inter-model variability of the 20-yr
return period precipitation intensity change

For each GCM, Table 2 also lists the ensemble pattern values for the 20-yr return10

period precipitation intensity change (∆RP’20) and its SNR calculated from 6 simulation
samples for Australia and its administrative regions. In general, the 6 models that
had good linearity signals at the national level also had high SNR for most regions.
IPSL CM40 showed a negative ∆RP’20 (−0.23 %K−1) for VIC but with a very small
SNR (0.06). GFDL CM20, GFDL CM21, and CCCMA CGM3 (T47) showed a relatively15

high increase rate of ∆RP20 for most regions, even though there was large variability
between regions. MRI CGCM2, NCAR CCSM3 had poor SNR for almost all regions,
while other models had varied SNR for different regions. Again, for the same region,
the ∆RP’20 varied significantly from one GCM to another, NT in particular had a ∆RP’20

ranging from 0.97 to 36.87 %K−1. The range was reduced at the national level, from20

2.21 to 20.40 %K−1.
Figure 4 gives the GCM internal and inter-model variability in annual ∆RP’20over

Australia. For each GCM, the 6 sample values were distributed randomly, similar to that
of ∆P99. Compared with ∆P99, the SD values of ∆RP20 were larger. IPSL CM40, CC-
CMA CGCM3 and MRI CGCM2 showed the largest SD among GCMs. GFDL CM2125

also showed a larger SD with a large increase rate of ∆RP’20, similar to its perfor-
mance in ∆P’99. CSIRO MK35 had relatively smaller SD, however, its R2 did not pass
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the 95 % significance level test. Only ECHO G gave both higher R2 and lower SD. The
inter-model SD of ∆RP’20 was 9.36 %K−1 (shown in Table 5), which was the largest
among all the GCM internal SD values.

3.3 The mean daily precipitation intensity changes

3.3.1 The linearity of the mean daily precipitation intensity change (∆RPD)5

in response to global annual mean temperature change (∆T )

At national scale, Fig. 5 shows the linearity of the change of mean daily precipitation
intensity (∆RPD) in response to ∆T for the 12 GCMs. Nine GCMs showed a strong
signal of linear response of ∆RPD to global mean temperature change, with R2 values
higher than the 95 % significance level. CSIRO MK35 and MRI CGCM2 showed no10

linearity signals, while BCCR BCM20, GFDL CM21 and MIROC MEDRES show some
linearity signals (R2 are 0.68, 0.40 and 0.69 respectively). ECHAM MPI shows the
most rapid change and the lowest change rate is found in CSIRO MK35.

The R2 values of ∆RPD for each region and each GCM are shown in Table 3. In
each region, there were 2 to 7 GCMs passed the 95 % significance level test, which15

was less than the 9 GCMs at the national level for Australia. In VIC, 7 GCMs passed
95 % significant level test, while in QLD 2 GCMs passed. Among GCMs which showed
a significant correlation between ∆RPD and ∆T for Australia, there were 0 to 6 regions
which showed significant correlations. For IPSL CM40 the national correlation coeffi-
cient passed the 95 % significance level test, but no region in Australia passed the test.20

For ECHAM MPI, 6 regions passed the test with some high R2 values. Noticeable, for
NCAR CCSM3, the overall R2 of ∆RPD is 0.92 and 5 regions also passed the 95 %
significance level test, however, in ∆RP20 and ∆P99 no significant correlations were
detected. Among the GCMs for which the correlation coefficients did not pass the 95 %
significance level, GFDL CM21 had one region which did pass the 95 % significance25

level. The ∆RPD had the best performance, in terms of the linear relationship with ∆T,
among the three precipitation intensity indices.
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3.3.2 GCM internal variability of the mean daily precipitation intensity change

For each GCM, Table 3 lists the ensemble pattern values (∆RPD’) and its SNR calcu-
lated from 6 simulation samples for Australia and its 7 administrative regions. The 9
models that had good linearity performance at the national level also showed reason-
ably high SNR for most regions, except GFDL CM20 that had small SNR for 4 out of the5

7 regions. In general, the 3 GCMs that showed some linearity signals (BCCR BCM20,
GFDL CM21 and MIROC MEDRES) all had reasonable SNR. As shown in Table 3,
the internal variability was small across regions compared to ∆P’99 and ∆RP’20, which
indicated relatively consistent projections of ∆RPD’ from all GCMs. ECHAM MPI had
relatively high ∆RPD’ for all regions except TAS; and IPSL CM40 had the largest range10

of ∆RPD’ across the country (from −1.94 to 4.22 %K−1). A few models projected de-
creased ∆PRD’ for some regions shown by the negative numbers in Table 3. For the
same regions, the ∆RPD’ varied from one GCM to another, but with a smaller range
compared to ∆P’99 and ∆RP’20. The ∆RPD’ range was 1.49 to 5.19 %K−1 at the na-
tional level for the 10 models that showed moderate to good linearity.15

The variations of ∆RPD’ were generally smaller than the other two indices (Fig. 6).
MRI CGCM2 had the largest SD (2.4), while others were less than 1.0. NCAR CCSM
and ECHO G had the smallest SD with high R2. Negative ∆RPD’ values appeared in
several simulations of CSIRO MK35 and MRI CGCM2. The inter-model SD for ∆RPD
was 2.41, which was larger than the GCM internal SDs over Australia.20

3.4 Comparison of the grid cell to grid cell signal-to-noise ratios (SNR)

Further studies were carried out at the grid-cell (0.25*0.25 degree) scale to investigate
the spatial pattern of signal-to-noise ratios of the three indices. A larger percentage
of high SNR at the grid cell level, represented a more consistent result from different
simulation samples of a GCM. For each GCM, we analysed the SNR level of 0.5, 1.025

and 2.0 based on grid cell, and the statistical results are displayed in Table 4.
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For ∆P’99, the average SNR for all GCMs showed that more than 80 % of the grid
cells had values larger than 0.5, about half larger than 1.0, and a little over 10 %
larger than 2.0. Among the GCMs, ECHAM MPI had the best performance, followed
by ECHO G and MIROC MEDRES. More than 20 % of the grid cells of the above
GCMs had their SNR greater than 2.0. Four GCMs, i.e., BCCR BCM20, MRI CGCM2,5

NCAR CCSM3 and GDFL CM21, had less than 10% of the grid-cells with a SNR larger
than 2.0 and less than 50 % grid cell SNR larger than 1.0, and BCCR BCM20 had the
lowest values in all three SNR levels of the GCMs.

Compared to ∆P’99, a small improvement was shown in the grid cell SNR level of
∆RP’20. On average, nearly 90 % grid cells had values larger than 0.5, more than half10

passed 1.0, and about 17 % passed 2.0. This improvement was the result of increased
SNR values for most GCMs. However, 2 GCMs showed worse SNR performance than
for ∆P’99 (these were CSIRO MK35 and MIROC MEDRES).

The ∆RPD’ had the highest SNR levels among the three indices. Four GCMs had
more than half of the grid cells that show strong signals with SNR greater than 2.0. In15

contrast to its performance of ∆P’99 and ∆RP’20, NCAR CCSM3 had a high level of
SNR with 55.26 % of its grid cells greater than 2.0. ECHO G and ECHAM5 MPI had
the best values, similar to their performance in the other 2 indices. On average, more
than 60 % grid cells had SNR higher than 1.0 and about a third had SNR close to 2.0.

The spatial patterns of these SNRs can be found in the Supplementary Fig. 1 to20

supplementary Fig. 3

3.5 Inter-model ensemble

Inter-model variability is one of the major sources of uncertainty for future climate pro-
jection. As demonstrated in the previous sections, for the same region the change
pattern of precipitation indices can vary significantly among GCM simulations, usually25

much larger than any GCM-internal variability from pattern scaling. As a result of such
high uncertainties, a large ensemble of GCM predictions sampling the widest possible
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modelling range are needed to understand the range of uncertainties due to different
GCM results and to have such uncertainties properly analyzed in subsequent impact
assessments.

For the three precipitation indices, we carried out an inter-model ensemble based on
the 12 GCMs. The first step of the ensemble was to generate the normalised climate5

change pattern value ∆V’ for each grid cell, which was calculated from the 6 samples
(3 SRES scenarios by 2 sample periods) for each GCM. The second step was to apply
the bootstrap method to obtain the median, as well as the 10th and 90th percentiles of
∆V’ for each grid cell based on the 12 GCM projections. Figure 7 shows the spatial
distributions of the median and SD of the ∆P’99, ∆RP’20 and ∆RPD’ from the ensemble.10

It showed that the change rates of the 3 indices all increased under global warming, as
∆P’99 and ∆RPD’ had positive median values for most of the country, while the median
values of ∆RP’20 were positive for the entire country. In general, southeast regions
(NSW, SA, TAS, and VIC) had lower SD than the north and west regions (NT, QLD
and WA), which meant a smaller inter-model variability in the southeast (Fig. 7). VIC15

had the highest change rates for both P99 and RPD among regions, also with relatively
small SD, indicating a consistent projection of high ∆P99 and ∆RPD change rates from
all GCMs for VIC. The boarder between QLD and NT was another area that had the
high change rate for all 3 indices, but was accompanied with relatively high SD, which
meant relatively high inter-model uncertainties.20

To reveal the statistical nature of the uncertainties in the ensemble results, we ag-
gregated their median value to regional and national levels, then, calculated the aver-
ages. Table 5 lists the average median value results for Australia and its administrative
regions, as well as the inter-modal standard deviation (SD) and the 10th, 90th per-
centiles. At the regional average, the median values of the 3 indices were all positive,25

indicating enhanced precipitation extremes for the whole country for this century. Most
of the 10th percentiles for the 3 indices are around zero, which means that 10 % of
GCMs simulated change rates which were not significant. On the other hand, another
10 % of GCMs demonstrate a dramatically increased change rates, shown by the large
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change values of the 90th percentiles. VIC had the highest average median values for
∆P’99, and ∆RPD’, which was consistent with Fig. 7.

As summarized in Table 5, the annual median value of ∆P’99 at the national level for
Australia was 3.56 % K−1, with significant inter-model standard deviations (7.23 % K−1).
Most of the 10th percentile ∆P’99values were negative, except for TAS, while most of5

the 90th percentile values ranged from 10–20 % K−1. The median value of annual
∆RP’20 over Australia was 7.62 % K−1, with a relative standard deviation of more than
100 % (SD=9.36 % K−1). The 10th and 90th values ranged from 0.71 to 20.22 % K−1.
The difference of ∆RP’20 among the administrative regions was not significant, varying
from 7.21 to 8.40 % K−1. NT had the largest median value and largest standard devi-10

ation. The median of annual ∆RPD’ was 2.26 % K−1 with 10th percentile −0.31 % K−1

and 90th percentile 4.85 % K−1. VIC was projected for the largest increase among ad-
ministrative regions, with up to 3.45 % K−1. QLD had the lowest increase value and
largest SD, and the largest negative value (−1.01 % K−1) in the 10th percentile projec-
tion.15

4 Discussion

For climate change impact assessment, results based on an ensemble approach is
preferred to a single model run, as a single prediction of future climate made with even
the most sophisticated GCM can be of limited use for impact assessment. Within an
ensemble approach, provided the members of the ensemble are independent, the en-20

semble size will have certain effects on the accuracy of the simulation results (Sterl
et al., 2007). Hence, one of the main limitations of this research was that both GCM-
internal and inter-model ensemble size were rather small: 6 samples for GCM-internal
and 12 samples for inter-model ensemble. In addition, the members were assembled
on an opportunity basis from available data, rather than designed to sample modelling25

uncertainties in a systematic way. In our view, therefore, this small sample size was
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insufficient to reveal the actual relationship between precipitation intensity indices and
the global warming trend. In order to get more reliable precipitation change projec-
tions especially for extreme precipitation events, more ensemble members are needed
including more sample runs from one GCM and more GCMs.

In the GCM-internal ensemble, all the publicly available GCM daily precipitation out-5

puts were used however, this only gave 6 samples. The linearity test of the precipitation
intensity indices passed the 95 % significance level for most of the GCMs at the Aus-
tralian national level, and performed reasonably at the regional level (Tables 1 to 3),
which was justifies applying the pattern scaling technique in impact assessment stud-
ies for precipitation. As expected, the linearity significance became weaker when the10

spatial/temporal scale got smaller. It is not possible to say, on the basis of this research,
how much of this weakness is due to a truly nonlinear response of climate variables
to global mean temperature change, and how much is due to the small number in the
ensemble size and the short duration of each sample (20 yr). The deteriorating SNR at
the grid cell level (Table 4) also casts doubts in applying the pattern scaling method in15

precipitation intensity analysis, more data are needed in order to investigate the causes
for this. The 6 samples of each GCM were from three different emissions scenarios
and two 20-yr periods, and the transient climate effect of aerosols on local precipitation
patterns (Boer et al., 2000; Menon et al., 2002) can pose another source of the internal
variability. More dedicated internal GCM ensemble methods, such as, the perturbed20

physical ensemble (Murphy et al., 2007) will also need to be explored. Nevertheless,
for GCM internal ensembles, the sampling uncertainty arising from the parameterisa-
tion of atmospheric physical processes and the effects of natural variability, provide a
first opportunity to quantify the robustness of predictions of changes in precipitation
obtained from GCM simulations (Barnett et al., 2006). At present, using the average25

pattern scaling values from all the samples is probably the most appropriate way in
constructing the normalised spatial pattern that the pattern scaling method requires.
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In terms of the GCM inter-model ensemble, the sample size of 12 GCMs used in
this study may also be insufficient to reveal the actual distribution of the spectrum
of uncertainties caused by different GCM simulations. Furthermore, the inter-model
ensemble could be under-dispersive rather than over-dispersive, because the GCM
simulations used are not explicitly designed to sample the range of future responses5

consistent with recent historical observations (Allen and Ingram, 2002). More GCM
simulations running under more purposely designed scenarios will be of great help
to expose the real uncertainties of future precipitation intensity responses to climate
change.

5 Conclusions10

Estimating future potential changes in precipitation characteristics provides essential
input to urban, regional and national adaptation and planning strategies through the
establishment of, for example, flood prevention strategies. This research attempts to
highlight and examine the fundamental assumptions of the pattern scaling technique,
as well as uncertainty, and contributes to the practical application of GCM-derived cli-15

mate projections. Through applying a two-step ensemble to 3 precipitation intensity in-
dices, we found that: (1) The accuracy of pattern scaling linearity varies among GCMs
and regions. The high linearity can be achieved for most of the GCMs at large spatial
scales, such as the national level for Australia. A GCM showing good linearity for one
indicator does not guarantee its good linear performance for any other indicator, and20

the GCM internal signal-to-noise ratios tends to decrease with the spatial scale decline
as well. Even though the linearity weakens quickly with increased spatial scale, the
error that might be incurred from such GCM internal variability is still much smaller
compared to the inter-model variability. Pattern scaling is still a good compromised
method in construction of future change of precipitation indices, especially for trend25

analysis. (2) The two-step ensemble method utilizes all the available information in
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calculating the scaled response rather than one forcing scenario and/or one GCM, so
that the uncertainty level can be directly assessed by statistical analysing of the ensem-
ble results. This study assumed all GCM ensemble members to be equally plausible,
with no weighting factor introduced. The two-step ensemble offers an opportunity to
evaluate the performance of a given GCM in precipitation simulation, where it is ap-5

plicable, as a reference for selecting ensemble members. This can assist in selecting
appropriate GCMs, or giving sensible weighting factors for selected GCMs in an en-
semble. Another advantage of the two step ensemble approach is that it reduces the
influence of GCM internal variability. This is particularly important if, in some of the
GCM simulation output happens to be at opposite direction of other simulations dur-10

ing the projection periods (Ruosteenoja, et al., 2007). (3) The uncertainties increase
when the spatial and/or temporal scales become finer in a given study, which was also
found by Tebaldi et al. (2004). Besides obtaining more sample numbers from daily
simulations of different GCMs, statistical downscaling or dynamic downscaling might
produce more regional information based on the coarse resolution GCM data, and15

should be more appropriate for regional impact assessments (Wilby et al., 2002; Spak
et al., 2007; Haylock et al., 2006; Kennett and Buonomo, 2006). (4) By applying the
method to Australia and its administrative regions, we found that, as shown in Table 5,
the median value of the annual ∆P’99 was projected to increase by 3.56 % K−1 for the
whole country, with the lowest median increase for QLD (3.16 % K−1), and the largest20

increase for VIC (6.34 % K−1). The median value of annual ∆RP’20 over Australia in-
creases 7.62 % K−1, with a relative standard deviation of more than 100 % (9.36 % K−1).
The 10th and 90th values range from 0.71 to 20.22 % K−1. The different ∆RP’20 among
the administrative regions were not significant, varying from 7.21 to 8.40 % K−1. The
overall average annual ∆RPD’ of 12 GCM ensembles was 2.26 % K−1 with the 10th25

and 90th percentiles being −0.31 and 4.85 % K−1 respectively. Compared to the two
extreme precipitation indices, the linear correlation between ∆RPD and ∆T was bet-
ter. The most extreme index, ∆RP’20 had the lowest number of GCMs which showed
significant correlations to ∆T, this indicates the random nature of extreme precipitation.
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Supplementary material related to this article is available online at:
http://www.hydrol-earth-syst-sci-discuss.net/8/5227/2011/
hessd-8-5227-2011-supplement.zip.
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Table 1. GCM internal ensemble of ∆P99 in response to ∆T and the signal-to-noise ratio (SNR)
of 6 simulation samples over Australia.

NSW NT QLD SA

R2 ∆P99 SNR R2 ∆P99 SNR R2 ∆P99 SNR R2 ∆P99 SNR

1 0.27 3.45 0.81 0.43 3.73 0.87 0.30 2.67 0.69 0.59 2.63 0.76
2 0.43 2.36 0.42 0.63 16.42 3.13 0.30 4.32 0.68 0.79∗ 3.20 1.51
3 0.08 3.18 0.93 0.70∗ 5.93 6.11 0.60 7.48 3.74 0.77∗ 6.39 3.97
4 0.67∗ 6.62 2.96 0.55 8.58 3.61 0.70∗ 5.87 4.22 0.26 5.82 1.05
5 0.84∗ 9.05 6.61 0.12 8.03 2.29 0.17 6.91 2.27 0.38 10.86 3.08
6 0.83∗ 6.09 6.48 0.54 3.52 2.50 0.63 3.03 3.94 0.95∗ 4.91 3.51
7 0.67∗ 2.20 0.60 0.96∗ 24.72 12.30 0.43 16.38 3.94 0.01 8.09 1.22
8 0.01 0.86 0.20 0.63 15.11 2.96 0.38 9.87 1.70 0.93∗ 0.80 0.14
9 0.36 7.95 1.52 0.73∗ 8.96 3.64 0.73∗ 15.11 2.31 0.26 7.79 1.77
10 0.75∗ 5.15 3.03 0.53 2.40 2.50 0.83∗ 2.06 1.72 0.25 5.23 2.11
11 0.07 2.62 0.87 0.01 −1.17 0.25 0.12 0.00 0.00 0.19 4.52 0.69
12 0.18 0.28 0.28 0.09 −0.44 0.49 0.00 1.10 1.62 0.12 −0.53 0.26

TAS VIC WA AUS

R2 ∆P99 SNR R2 ∆P99 SNR R2 ∆P99 SNR R2 ∆P99 SNR

1 0.09 2.49 0.40 0.60 3.39 0.99 0.15 0.66 0.10 0.30 2.42 0.52
2 0.83∗ 10.66 4.28 0.87∗ 9.14 1.89 0.08 11.19 2.68 0.97∗ 8.53 10.80
3 0.99∗ 1.41 0.56 0.24 9.49 2.41 0.72∗ 6.43 3.44 0.91∗ 6.56 8.41
4 0.08 −0.33 0.16 0.24 5.38 0.91 0.01 3.27 1.19 0.62 5.19 4.19
5 0.79∗ 9.08 4.86 0.53 9.62 3.46 0.82∗ 7.89 5.40 0.72∗ 8.01 5.17
6 0.76∗ 6.03 3.37 0.72∗ 8.86 5.47 0.33 2.42 2.24 0.86∗ 4.05 6.33
7 0.07 17.55 2.01 0.53 8.59 1.49 0.36 12.65 3.37 0.89∗ 13.77 8.50
8 0.03 8.45 0.89 0.01 7.29 1.30 0.94∗ 13.98 5.55 0.79∗ 10.07 5.22
9 0.30 0.81 0.68 0.77∗ 1.79 0.82 0.85∗ 10.46 5.45 0.79∗ 9.67 3.66
10 0.56 7.41 3.38 0.62 10.12 4.27 0.07 2.35 2.10 0.69∗ 3.67 4.42
11 0.23 7.81 2.06 0.71∗ 6.83 1.35 0.01 1.94 1.18 0.12 3.06 1.39
12 0.92∗ 2.00 1.80 0.78∗ 1.79 2.01 0.00 1.10 1.69 0.22 0.82 1.71

∗ The confidence level is over 95%.
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Table 2. GCM internal ensemble ∆RP20 in response to ∆T and the signal-to-noise ratio (SNR)
of 6 simulation samples over Australia.

NSW NT QLD SA

R2 ∆RP’20 SNR R2 ∆RP’20 SNR R2 ∆RP’20 SNR R2 ∆RP’20 SNR

1 0.26 7.61 1.71 0.01 4.15 1.25 0.46 8.06 2.92 0.12 4.52 2.35
2 0.71∗ 8.62 1.05 0.43 24.90 2.68 0.81∗ 12.49 2.79 0.78∗ 7.72 1.34
3 0.13 8.06 1.14 0.14 10.76 2.61 0.46 8.43 2.98 0.44 8.23 2.24
4 0.41 5.70 2.02 0.31 5.98 3.02 0.61 4.83 2.65 0.12 1.17 0.24
5 0.60 11.10 4.01 0.24 9.61 2.36 0.52 10.67 3.84 0.49 13.39 3.16
6 0.91∗ 7.06 3.41 0.49 6.84 2.21 0.61 5.29 2.37 0.86∗ 9.48 2.36
7 0.94∗ 3.97 0.89 0.93∗ 36.87 6.22 0.78∗ 22.47 4.09 0.41 12.41 2.27
8 0.12 4.39 0.88 0.97∗ 28.39 3.96 0.49 15.52 1.50 0.87∗ 1.43 0.24
9 0.51 9.29 1.41 0.77∗ 17.33 2.76 0.56 20.27 1.90 0.46 8.63 1.72
10 0.74∗ 6.53 3.93 0.00 1.54 0.47 0.09 5.92 1.80 0.09 9.64 2.37
11 0.27 5.95 0.86 0.25 3.85 0.59 0.40 4.53 0.96 0.12 8.37 1.02
12 0.08 1.55 0.39 0.39 0.97 0.27 0.06 2.23 0.58 0.05 0.08 0.02

TAS VIC WA AUS

R2 ∆RP’20 SNR R2 ∆RP’20 SNR R2 ∆RP’20 SNR R2 ∆RP’20 SNR

1 0.33 7.36 1.47 0.22 7.13 1.57 0.56 4.51 1.73 0.41 5.60 2.96
2 0.83∗ 2.76 0.53 0.92∗ 8.16 0.94 0.41 21.81 3.27 0.75∗ 15.22 3.30
3 0.20 3.54 0.86 0.07 8.16 1.19 0.15 9.55 2.87 0.32 8.52 2.65
4 0.00 −2.12 0.36 0.17 1.33 0.17 0.13 1.27 0.46 0.35 2.79 2.13
5 0.10 16.24 2.27 0.83∗ 10.11 5.32 0.92∗ 11.35 6.84 0.79∗ 10.31 6.53
6 0.93∗ 5.40 2.35 0.67∗ 11.55 3.25 0.68∗ 4.07 1.65 0.84∗ 6.52 3.23
7 0.32 18.02 2.62 0.68∗ 10.80 1.84 0.60 16.97 2.28 0.86∗ 20.46 4.57
8 0.07 9.34 1.00 0.21 8.61 2.54 0.90∗ 20.81 5.48 0.83∗ 16.35 4.19
9 0.67∗ 4.57 2.33 0.58 −0.23 0.06 0.88∗ 16.41 3.95 0.73∗ 14.16 2.45
10 0.16 8.35 2.33 0.49 8.13 3.00 0.00 3.32 1.48 0.12 4.90 2.40
11 0.01 14.55 1.13 0.61 9.84 1.58 0.51 6.96 2.07 0.44 6.94 1.47
12 0.44 12.18 2.46 0.81∗ 4.63 1.27 0.19 2.08 0.55 0.04 2.21 0.64

∗ The confidence level is over 95%.
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Table 3. GCM internal ensemble ∆RPD in response to ∆T , R square and the signal-to-noise
ratio (SNR) of 6 simulation samples over Australia.

NSW NT QLD SA

R2 ∆RPD’ SNR R2 ∆RPD’ SNR R2 ∆RPD’ SNR R2 ∆RPD’ SNR

1 0.67∗ 2.15 3.91 0.42 2.19 1.84 0.17 0.93 1.39 0.87∗ 1.59 1.96
2 0.71∗ 3.40 1.55 0.68∗ 3.97 2.63 0.61 3.76 1.82 0.82∗ 1.99 1.69
3 0.17 0.83 0.72 0.88∗ 1.07 2.74 0.30 1.60 1.86 0.00 2.37 1.44
4 0.00 1.30 1.01 0.14 0.83 0.81 0.25 0.75 1.04 0.01 1.56 0.50
5 0.50 4.84 3.08 0.85∗ 6.15 4.49 0.90∗ 5.02 6.44 0.28 7.04 2.55
6 0.94∗ 5.68 8.88 0.69∗ 2.95 5.27 0.54 1.44 3.89 0.90∗ 5.10 5.05
7 0.37 1.91 1.62 0.48 0.84 0.46 0.00 0.22 0.17 0.17 2.11 0.91
8 0.31 1.27 0.68 0.54 2.17 1.28 0.12 1.58 0.72 0.77∗ 3.14 1.58
9 0.29 1.65 1.76 0.33 3.33 3.40 0.42 4.22 1.60 0.00 1.62 0.96
10 0.80∗ 3.99 3.38 0.70∗ 3.39 2.63 0.73∗ 3.09 2.55 0.54 3.72 3.44
11 0.08 1.50 0.72 0.30 −2.07 0.52 0.26 −2.06 0.58 0.20 2.54 0.45
12 0.90∗ 3.46 8.24 0.70∗ 1.95 4.24 0.48 2.16 3.54 0.62 3.12 4.05

TAS VIC WA AUS

R2 ∆RPD’ SNR R2 ∆RPD’ SNR R2 ∆RPD’ SNR R2 ∆RPD’ SNR

1 0.76∗ 3.46 5.16 0.90∗ 1.85 2.26 0.59 1.04 1.63 0.68∗ 1.49 2.33
2 0.90∗ 1.70 3.40 0.95∗ 5.00 2.84 0.02 3.19 2.06 0.96∗ 3.48 7.57
3 0.87∗ 2.21 3.16 0.54 3.29 2.24 0.71∗ 2.08 3.01 0.76∗ 2.01 4.47
4 0.39 −0.57 0.48 0.03 1.22 0.58 0.48 −1.51 2.65 0.00 0.11 0.15
5 0.52 2.03 2.11 0.79∗ 4.84 3.46 0.92∗ 5.15 7.69 0.89∗ 5.19 6.03
6 0.72∗ 1.29 1.08 0.95∗ 5.83 5.50 0.81∗ 2.01 4.02 0.96∗ 3.07 13.35
7 0.91∗ 2.23 6.76 0.79∗ 3.65 1.84 0.00 0.69 0.78 0.81∗ 1.55 3.69
8 0.46 2.15 1.45 0.28 2.76 1.15 0.23 3.25 1.90 0.40 2.45 2.45
9 0.63 −1.94 4.04 0.05 −0.16 0.26 0.50 2.85 2.34 0.77∗ 2.69 4.01
10 0.63 2.42 3.03 0.73∗ 5.66 4.29 0.04 1.92 1.94 0.69∗ 3.17 3.45
11 0.40 4.52 3.96 0.62 3.65 1.32 0.11 0.96 0.45 0.05 0.73 0.30
12 0.75∗ 0.82 2.16 0.88∗ 3.14 3.34 0.81∗ 2.81 5.51 0.92∗ 2.58 12.29

∗ The confidence level is over 95%.
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Table 4. The grid cell percentages at different SNR levels for 12 GCMs and 3 precipitation
intensity indices.

∆P’99 ∆RP’20 ∆RPD’

>0.5 >1.0 >2.0 >0.5 >1.0 >2.0 >0.5 >1.0 >2.0

BCCR BCM20 51.64 10.78 1.09 86.4 42.27 7.16 85.31 57.72 15.42
CCCMA CGCM3 74.88 53.58 13.66 95.57 65.06 25.86 92.35 69.10 19.91
CNRM CM3 89.22 63.7 8.00 94.06 59.51 15.28 88.66 63.90 18.25
CSIRO MK35 81.05 46.03 13.28 77.53 37.70 5.43 79.21 37.59 5.71
MPI ECHAM5 95.72 78.67 24.23 93.42 76.08 31.89 99.55 96.14 65.37
ECHO G 88.08 67.88 24.19 93.78 74.07 23.03 98.66 95.57 71.74
GFDL CM20 89.37 54.10 16.95 88.67 68.65 25.71 79.39 45.11 8.07
GFDL CM21 76.17 37.17 9.35 82.30 59.77 22.47 73.28 36.79 7.68
IPSL CM40 85.85 52.14 11.04 95.38 71.77 17.65 76.54 49.60 11.93
MIROC MEDRES 87.63 58.63 25.44 80.72 52.34 14.16 95.23 85.52 50.45
MRI CGCM2 64.73 28.54 5.49 82.75 36.40 3.15 56.56 12.76 2.22
NCAR CCSM3 82.11 40.8 5.55 77.09 39.79 8.40 97.7 89.74 55.26

Average 80.54 49.34 13.19 87.31 56.95 16.68 85.20 61.63 27.67
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Table 5. The inter- model ensemble results of 3 precipitation intensity indices.

NSW NT QLD SA TAS VIC WA AUS

∆P’99

Median 3.23 4.09 3.16 3.64 4.09 6.34 3.33 3.56
SD 5.07 9.57 7.49 5.66 5.16 4.10 7.60 7.23
10th −1.40 −0.02 −0.24 −0.97 0.81 1.48 −0.71 −0.52
90th 9.78 17.26 14.90 11.20 11.12 11.12 14.71 14.01

∆RP’20

Median 7.21 8.40 7.72 7.19 7.36 7.94 7.45 7.62
SD 4.67 14.4 9.5 6.72 6.21 5.07 9.89 9.36
10th 0.86 0.98 1.77 −0.16 2.63 0.59 0.14 0.71
90th 11.55 27.88 21.05 14.38 16.54 12.3 21.96 20.22

∆RPD’

Median 2.55 2.23 1.83 2.82 1.91 3.45 2.12 2.26
SD 1.94 2.51 2.79 2.39 1.73 1.94 2.35 2.41
10th 0.52 −0.46 −1.01 0.53 −0.36 1.06 −0.55 −0.32
90th 4.79 5.05 4.73 5.78 3.47 5.61 4.42 4.85
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Fig. 1. The linearity of annual ∆P99 in response to global mean temperature change for
Australia.
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Fig. 2. The internal and inter-model variability in annual ∆P’99 overall Australia. Shade-boxes
are the median, 5th and 95th percentile.
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Fig. 3. The linearity of annual ∆RP20 in response to global mean temperature change in
Australia.
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Fig. 4. The internal and inter-model variability in annual and seasonal ∆RP’20 over Australia.
Shade- boxes are the median, the 5th and 95th percentiles.
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Fig. 5. The linearity of annual ∆RPD in responses to global annual mean temperature change
in Australia.

5259

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/5227/2011/hessd-8-5227-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/5227/2011/hessd-8-5227-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 5227–5261, 2011

Applicability of
ensemble pattern
scaling method

Y. Li and W. Ye

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 6. The internal and inter-model variability in annual ∆RPD’ over Australia. The boxes are
the median, 5th and 95th percentile.
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Fig. 7. The comparison of inter-model ensemble annual median values (%/K−1) and standard
deviations of change patterns for the three precipitation intensity indicators.
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